
Tess Smidt
2018 Alvarez Fellow
in Computing Sciences

Neural Networks with
Euclidean Symmetry for
Physical Sciences

3D rotation- and
translation-equivariant
convolutional neural networks
(for points, meshes, images, ...)

CSA Summer Series
2020.07.01

Tess Smidt
2018 Alvarez Fellow
in Computing Sciences

Neural Networks with
Euclidean Symmetry for
Physical Sciences

3D rotation- and
translation-equivariant
convolutional neural networks
(for points, meshes, images, ...)

CSA Summer Series
2020.07.02

Talk Takeaways

1. First a deep learning primer!

2. Different types of neural networks encode
assumptions about specific data types.

3. Data types in the physical sciences are
geometry and geometric tensors.

4. Neural networks with Euclidean symmetry can
natural handle these data types.
a. How they work
b. What they can do

A brief primer on deep learning

deep learning ⊂ machine learning ⊂ artificial intelligence

model | deep learning | data | cost function | way to update parameters | conv. nets 3

Skip?

model (“neural network”):
Function with learnable parameters.

model | deep learning | data | cost function | way to update parameters | conv. nets 4

A brief primer on deep learning

model (“neural network”):
Function with learnable parameters.

Linear
transformation

Element-wise
nonlinear
function

Learned
Parameters

Ex: "Fully-connected"
network

model | deep learning | data | cost function | way to update parameters | conv. nets 5

A brief primer on deep learning

model (“neural network”):
Function with learnable parameters.

Neural networks with multiple layers
can learn more complicated functions.

Learned
Parameters

model | deep learning | data | cost function | way to update parameters | conv. nets 6

Ex: "Fully-connected"
network

A brief primer on deep learning

model (“neural network”):
Function with learnable parameters.

Neural networks with multiple layers
can learn more complicated functions.

Learned
Parameters

model | deep learning | data | cost function | way to update parameters | conv. nets 7

Ex: "Fully-connected"
network

A brief primer on deep learning

deep learning:
Add more layers.

model | deep learning | data | cost function | way to update parameters | conv. nets 8

A brief primer on deep learning

data:
Want lots of it. Model has many parameters. Don't want to easily overfit.

https://en.wikipedia.org/wiki/Overfitting

model | deep learning | data | cost function | way to update parameters | conv. nets 9

A brief primer on deep learning

cost function:
A metric to assess how well the model is performing.
The cost function is evaluated on the output of the model.
Also called the loss or error.

model | deep learning | data | cost function | way to update parameters | conv. nets 10

A brief primer on deep learning

way to update parameters:
Construct a model that is differentiable

Easiest to do with differentiable programming frameworks: e.g. Torch, TensorFlow, JAX, ...
Take derivatives of the cost function (loss or error) wrt to learnable parameters.
This is called backpropogation (aka the chain rule).

error

model | deep learning | data | cost function | way to update parameters | conv. nets 11

A brief primer on deep learning

http://deeplearning.stanford.edu/wiki/index.php/Feature_extraction_using_convolution

model | deep learning | data | cost function | way to update parameters | conv. nets

convolutional neural networks:
Used for images. In each layer, scan over image with learned filters.

12

A brief primer on deep learning

model | deep learning | data | cost function | way to update parameters | conv. nets

http://cs.nyu.edu/~fergus/tutorials/deep_learning_cvpr12/

convolutional neural networks:
Used for images. In each layer, scan over image with learned filters.

13

A brief primer on deep learning Back

14

Neural networks are specially designed for different data types.
Assumptions about the data type are built into how the network operates. W x

15

Neural networks are specially designed for different data types.
Assumptions about the data type are built into how the network operates.

Arrays ⇨ Dense NN 2D images ⇨ Convolutional NN Text ⇨ Recurrent NN

Components are independent. The same features can be found
anywhere in an image. Locality.

Sequential data. Next
input/output depends on
input/output that has come
before.

W x

16

Neural networks are specially designed for different data types.
Assumptions about the data type are built into how the network operates.

Arrays ⇨ Dense NN 2D images ⇨ Convolutional NN Text ⇨ Recurrent NN

Components are independent. The same features can be found
anywhere in an image. Locality.

Sequential data. Next
input/output depends on
input/output that has come
before.

What are our data types in the physical sciences?
How do we build neural networks for these data types?

W x

17

Given a molecule and a rotated copy,
we want the predicted forces to be the same up to rotation.
(Predicted forces are equivariant to rotation.)
Additionally, we should be able to generalize to molecules with similar motifs.

18

Primitive unit cells, conventional unit cells, and supercells of the same crystal
should produce the same output (assuming periodic boundary conditions).

19

We want the networks to be able to predict molecular Hamiltonians in any
orientation from seeing a single example.

O
1s 2s 2s 2p 2p 3d

H
1s 2s 2p

H
1s 2s 2p

20

What our our data types?
3D geometry and geometric tensors...
...which transform predictably under 3D rotation, translation, and inversion.

These data types assume Euclidean symmetry.
⇨ Thus, we need neural networks that preserve Euclidean symmetry.

21

Analogous to... the laws of (non-relativistic) physics have Euclidean symmetry,
even if systems do not.

The network is our model of “physics”. The input to the network is our system.

q

B q

q q

q

22

A Euclidean symmetry preserving network produces outputs that preserve
the subset of symmetries induced by the input.

O(3) Oh Pm-3m
(221)

SO(2) +
mirrors

(C∞v)

3D rotations and
inversions

2D rotation and
mirrors along
cone axis

Discrete rotations
and mirrors

Discrete rotations,
mirrors, and translations

23

Geometric tensors take many forms. They are a general data type beyond materials.

24

Scalars
● Energy
● Mass
● Isotropic *

Vectors
● Force
● Velocity
● Acceleration
● Polarization

Pseudovectors
● Angular momentum
● Magnetic fields

Matrices, Tensors, …
● Moment of Inertia
● Polarizability
● Interaction of multipoles
● Elasticity tensor (rank 4)

m

Atomic orbitals

Output of
Angular
Fourier
Transforms

Vector fields on
spheres
(e.g. B-modes
of the Cosmic
Microwave
Background)

Geometric tensors take many forms. They are a general data type beyond materials.

25

Geometric tensors only permit specific operations.
(More about these later -- scalar operations, direct sums, direct products)
Neural networks that only use these operations are equivariant
to 3D translations, rotations, and inversion.

Equivariant vs. Invariant? Examples for a vector.

The location of a vector in
space is equivariant to
translation and equivariant
to rotation.

The direction of a vector
is invariant to translation
and equivariant to
rotation.

The magnitude of a vector
is invariant to rotation and
translation.

26

Why limit yourself to equivariant functions?
You can substantially shrink the space of functions you need to optimize over.
This means you need less data to constrain your function.

All learnable functions

All learnable
equivariant
functions

All learnable
functions
constrained
by your data.

Functions you
actually wanted
to learn.

27

Why not limit yourself to invariant functions?
You have to guarantee that your input features already
contain any necessary equivariant interactions (e.g. cross-products).

All learnable
equivariant
functions

Functions you actually
wanted to learn.All learnable

invariant
functions.

All invariant
functions
constrained by
your data.

OR

28

Building Euclidean Neural Networks

29

The input to our network is geometry and features on that geometry.

30

The input to our network is geometry and features on that geometry.
We categorize our features by how they transform under rotation.

Features have “angular frequency” L
where L is a positive integer.

Scalars

Vectors

3x3 Matrices

Frequency

Doesn’t change
with rotation

Changes with
same frequency
as rotation

31

The input to our network is geometry and features on that geometry.
We categorize our features by how they transform under rotation.

Features have “angular frequency” L
where L is a positive integer.

Scalars

Vectors

3x3 Matrices

Frequency

Doesn’t change
with rotation

Changes with
same frequency
as rotation

Convolutional filters based on learned radial functions and spherical harmonics.

=

Euclidean Neural Networks are similar to convolutional neural networks,
EXCEPT with special filters and tensor algebra!

Everything in the
network is a
geometric tensor!

Scalar multiplication
gets replaced with
the more general
tensor product.

Contract two indices
to one with
Clebsch-Gordan
Coefficients.

Dot
product

Cross
product

Outer
product

Example: How do you “multiply” two vectors?

Scalar,
Rank-0

Vector,
Rank-1

Matrix,
Rank-2

Euclidean Neural Networks are similar to convolutional neural networks,
EXCEPT with special filters and tensor algebra!

Our unit test: Trained on 3D Tetris shapes in one orientation,
these network can perfectly identify these shapes in any orientation.

TR
A

IN
TE

ST

34

Chiral

35

Applications

Laundry list…
● Inverting invariant representations
● Molecular dynamics
● Autoencoder for Geometry
● Determining missing data input through symmetry
● Electron density prediction for large molecules
● Molecule and crystal property prediction
● Conditional protein design
● ...

Predict ab initio forces for molecular dynamics
Preliminary results originally presented at
APS March Meeting 2019.
Paper in progress.

36

Testing on liquid water, Euclidean neural networks (Tensor-Field
Molecular Dynamics) require less data to train than traditional
networks to get state of the art results.

Data set from: [1]
Zhang, L. et al. E. (2018).
PRL, 120(14), 143001.

Boris
Kozinsky

Simon
Batzner

Euclidean neural networks can manipulate geometry,
which means they can be used for generative models such as autoencoders.

geometry features

To encode/decode, we have to be able to
convert geometry into features and vice versa.
We do this via spherical harmonic projections.

Euclidean neural networks can manipulate geometry,
which means they can be used for generative models such as autoencoders.

39

Equivariant neural networks can learn to invert invariant representations.

Which can be used
to recover geometry.

Network can predict
spherical harmonic
projection...

Invariant features +
coordinate frame

ENN Peak finding

Josh
Rackers

Thomas
Hardin

Pooling Pooling Unpooling Unpooling

We can also build an autoencoder for geometry: e.g. Autoencoder on 3D Tetris
Centers deleted

Centers deleted

Pooling Pooling Unpooling Unpooling

We can also build an autoencoder for geometry: e.g. Autoencoder on 3D Tetris

tensor field networks

Google Accelerated Science Team Stanford

Patrick
Riley

Steve
Kearnes

Nate
Thomas

Lusann
Yang

Kai
Kohlhoff

Li
Li

developers of e3nn
(and atomic architects)

Mario Geiger Ben Miller Tess SmidtKoctiantyn
Lapchevskyi

Euclidean neural networks operate on
points/voxels and have symmetries of E(3).
● The inputs and outputs of our network are

geometry and geometric tensors.
● Convolutional filters are built from spherical

harmonics with a learned radial function.
● All network operations are compatible with

geometric tensor algebra.

We expect these networks to be generally useful
for physics, chemistry, and geometry.

So far these networks have learned efficient
molecular dynamics models and can learn to
recursively encode and decode geometry.

Reach out to me if you are interested and/or
have any questions!

43

Tess Smidt
tsmidt@lbl.gov

e3nn Code (PyTorch):
http://github.com/e3nn/e3nn

e3nn_tutorial
https://blondegeek.github.io/e3nn_tutorial/

Tensor Field Networks
(arXiv:1802.08219)

3D Steerable CNNs
(arXiv:1807.02547)

https://blondegeek.github.io/e3nn_tutorial/

Calling in backup (slides)!

44

45

Several groups converged on similar ideas around the same time.

Tensor field networks: Rotation- and translation-equivariant neural networks for 3D point clouds
(arXiv:1802.08219)
Tess Smidt*, Nathaniel Thomas*, Steven Kearnes, Lusann Yang, Li Li, Kai Kohlhoff, Patrick Riley

Points, nonlinearity on norm of tensors

Clebsch-Gordan Nets: a Fully Fourier Space Spherical Convolutional Neural Network
(arXiv:1806.09231)
Risi Kondor, Zhen Lin, Shubhendu Trivedi

Only use tensor product as nonlinearity, no radial function

3D Steerable CNNs: Learning Rotationally Equivariant Features in Volumetric Data
(arXiv:1807.02547)
Mario Geiger*, Maurice Weiler*, Max Welling, Wouter Boomsma, Taco Cohen

Efficient framework for voxels, gated nonlinearity

*denotes equal contribution

46

Several groups converged on similar ideas around the same time.

Tensor field networks: Rotation- and translation-equivariant neural networks for 3D point clouds
(arXiv:1802.08219)
Tess Smidt*, Nathaniel Thomas*, Steven Kearnes, Lusann Yang, Li Li, Kai Kohlhoff, Patrick Riley

Points, nonlinearity on norm of tensors

Clebsch-Gordan Nets: a Fully Fourier Space Spherical Convolutional Neural Network
(arXiv:1806.09231)
Risi Kondor, Zhen Lin, Shubhendu Trivedi

Only use tensor product as nonlinearity, no radial function

3D Steerable CNNs: Learning Rotationally Equivariant Features in Volumetric Data
(arXiv:1807.02547)
Mario Geiger*, Maurice Weiler*, Max Welling, Wouter Boomsma, Taco Cohen

Efficient framework for voxels, gated nonlinearity

*denotes equal contribution

Tensor field networks + 3D steerable CNNs
= Euclidean neural networks (e3nn)

Let g be a 3d
rotation matrix.

a-1 +a0 +a1

=

D is the Wigner-D matrix.
It has shape
and is a function of g.

Spherical harmonics of a given L transform together under rotation.

g

47

b-1 +b0 +b1

D

48

H -0.21463 0.97837 0.33136
C -0.38325 0.66317 -0.70334
C -1.57552 0.03829 -1.05450
H -2.34514 -0.13834 -0.29630
C -1.78983 -0.36233 -2.36935
H -2.72799 -0.85413 -2.64566
C -0.81200 -0.13809 -3.33310
H -0.98066 -0.45335 -4.36774
C 0.38026 0.48673 -2.98192
H 1.14976 0.66307 -3.74025
C 0.59460 0.88737 -1.66708
H 1.53276 1.37906 -1.39070

Approach 1:
It doesn’t matter! It’s deep
learning! Throw all your
data at the problem and
see what you get!

Approach 3:
If there’s no model that
naturally handles
coordinates,
we will make one.

Coordinates are most
general, but sensitive to
translations and rotations.

Approach 2:
Convert your data to
invariant representations so
the neural network can’t
possibly mess it up.

👍�� ��

How do we represent geometric data with neural networks (inputs / outputs)?

Convolve

Bloom
Make points to cluster

Symmetric Cluster
Cluster bloomed points

Combine
Convolve with point origins of

cluster members

Geometry

N
ew

 G
eom

etry

How to encode (Pooling layer). Recursively convert geometry to features.

1st

2nd

Convolve

Bloom
Make new points

Cluster
Merge duplicate points

Combine
Convolve with origin point

of new points

Geometry

N
ew

 G
eom

etry

How to decode (Unpooling layer). Recursively convert features to geometry.

51

The outputs of the network must have equal or higher symmetry than the inputs.

52

The outputs of the network must have equal or higher symmetry than the inputs.

Input is geometry with
trivial feature.
([1.0] on each point)

Output (after training) is “blob”
(linear combination of spherical
harmonics) with maximum at
new point location.

53

The outputs of the network must have equal or higher symmetry than the inputs.

Network is unable to learn task.
“Blob” is not overlapping with
target (orange points).Output (after training) is “blob”

(linear combination of spherical
harmonics) with maximum at
new point location.

Input is geometry with
trivial feature.
([1.0] on each point)

54

✓ ✗
The outputs of the network must have equal or higher symmetry than the inputs.

D2h ￫ D4h D4h ￫ D2h

55

✓ ✗ ✓
The outputs of the network must have equal or higher symmetry than the inputs.

Add additional,
anisotropic
information to all
points to differentiate
x vs. y.

https://blondegeek.github.io/e3nn_tutorial/simple_tasks_and_symmetry.html

https://blondegeek.github.io/e3nn_tutorial/simple_tasks_and_symmetry.html

56

✓ ✗ ✓
The outputs of the network must have equal or higher symmetry than the inputs.

Add additional,
anisotropic
information to all
points to differentiate
x vs. y.

https://blondegeek.github.io/e3nn_tutorial/simple_tasks_and_symmetry.html

https://blondegeek.github.io/e3nn_tutorial/simple_tasks_and_symmetry.html

57

✓ ✗ ✓
The outputs of the network must have equal or higher symmetry than the inputs.

https://blondegeek.github.io/e3nn_tutorial/simple_tasks_and_symmetry.html

Learns to add
additional,
anisotropic
information to all
points to differentiate
x vs. y.

https://blondegeek.github.io/e3nn_tutorial/simple_tasks_and_symmetry.html

58

✓ ✗ ✓
The outputs of the network must have equal or higher symmetry than the inputs.

Learns to add
additional,
anisotropic
information to all
points to differentiate
x vs. y.

Physics plays by the same rules! Physical processes must choose from energetically
degenerate options to “break symmetry”.
https://blondegeek.github.io/e3nn_tutorial/simple_tasks_and_symmetry.html

https://blondegeek.github.io/e3nn_tutorial/simple_tasks_and_symmetry.html

59

Discrete geometry Discrete geometry

Reduce
geometry to
single point.

Create
geometry from
single point.

We want to convert geometric information (3D coordinates of atomic positions)
into features on a trivial geometry (a single point)
and back again.

Single point with continuous
latent representation
(N dimensional vector)

60

Reduce
geometry to
single point.

Create
geometry from
single point.

Atomic structures are
hierarchical and can be
constructed from
recurring geometric
motifs.

We want to convert geometric information (3D coordinates of atomic positions)
into features on a trivial geometry (a single point)
and back again.

Discrete geometry Discrete geometry
Single point with continuous
latent representation
(N dimensional vector)

61

Reduce
geometry to
single point.

Create
geometry from
single point.

+ Encode geometry
+ Encode hierarchy

(Need to do this in a recursive manner)

We want to convert geometric information (3D coordinates of atomic positions)
into features on a trivial geometry (a single point)
and back again.

Discrete geometry Discrete geometry
Single point with continuous
latent representation
(N dimensional vector)

Atomic structures are
hierarchical and can be
constructed from
recurring geometric
motifs.

+ Decode geometry
+ Decode hierarchy

To autoencode, we have to be able to convert
geometry into features and vice versa.
We do this via spherical harmonic projections.

63

To be rotation-equivariant means that we can rotate our inputs
OR rotate our outputs and we get the same answer (for every operation).

Layerin outRot

Layerin outRot=

For L=1 ⇨ L=1, the filters will be a learned, radially-dependent linear
combinations of the L = 0, 1, and 2 spherical harmonics.

64

L=2

Random filters for
L=1 ⇨ L=1…
(3 in L=1 channels by
 3 out L=1 channels)

… as a function of
increasing r.
Time showing filter for
varying r, where
0 ≤ r ≤ rmax

.

(+ / –)
Radial distance is
magnitude
as a function of
angle

65

Properties of a system must be compatible with symmetry.
Which of these situations (inputs / outputs) are symmetrically allowed / forbidden?

m m

m m

m m

a.

b.

c.

66

m m

m m

m m

a.

b.

c.

✓

✗

✗

Properties of a system must be compatible with symmetry.
Which of these situations (inputs / outputs) are symmetrically allowed / forbidden?

67

m m

m m

m m

a.

b.

c.

✓

✗

✗

m 2m

Properties of a system must be compatible with symmetry.
Which of these situations (inputs / outputs) are symmetrically allowed / forbidden?

68

m m

m m

m m

a.

b.

c.

✓

✗

✗

m 2m

m m
g

Properties of a system must be compatible with symmetry.
Which of these situations (inputs / outputs) are symmetrically allowed / forbidden?

69

70

Predictions for Oh symmetry
Ground Truth

Prediction of
network trained
with symmetry
breaking input
and given
symmetry
breaking input
along z.

Prediction of
network trained
with symmetry
breaking input
but given trivial
input
(single scalar).

Superposition of 6
rotationally
degenerate solutions.

